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We present a boundary formulation of the Helmholtz transmission problem over multiple penetrable
subdomains that lends itself to operator preconditioning via Calderón projectors. Composite scatterers
for scalar elliptic operators are first tackled in [3] but the proposed first kind integral formulation is not
well-suited for preconditioning. An alternative is given in [2] based on the tearing and interconnecting
technique developed in the context of non-overlapping domain decomposition methods. Although it can
readily be preconditioned, the method shows spurious modes and requires the iterative construction of
Steklov-Poincaré operators as well as local and global preconditioners [1].

The presented approach relies on the weak enforcement of jump conditions across interfaces by doubling
the number of trace unknowns in suitable functional spaces. Let ∂Ωi, i = 0, . . . , N , denote each subdo-
main boundary. If Vi := H1/2(∂Ωi) × H−1/2(∂Ωi), our formulation is set on subspaces Ṽi ⊂ Vi, for
which restriction and extension by zero operations are well defined. Through the use of interior Calderón
projectors, the problem is cast in variational Galerkin form with a matrix operator whose diagonal is
composed of block boundary integral operators. Specifically, let VN := V0 × · · · × VN and equivalently
for ṼN . We seek λ ∈ ṼN such that the variational form:
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for all ϕ ∈ ṼN (1)

is satisfied for g ∈ Ṽ0, Dirichlet and Neumann data on the exterior boundary, with R0N and R
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: ṼN −→ VN . (2)

where operators X̃ij account for transmission at the common interfaces.

We show uniqueness of solutions, continuity and coercivity in a larger space. Finally, numerical results
validate the model and its amenability to different kinds of preconditioning.
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